
Automating a functional tests suite in ODL
Sodium DDF April 2019 Guillaume Lambert / Cédric Ollivier

(TransportPCE) feedback

What works well (Junit)

Junit Tests are well integrated in Releng
- Console Logs can be watched before the job ends.
- jdk and maven are kept up-to-date
- etc…

But :

- UT cannot be disabled from Releng (does it build w/o UT ?)

- macros are available only in master and stable/* branches

- devices simulated must use the mockito framework

- cannot check the whole controller behavior and identify functional regressions
=> « black box approach » or « functional tests »

3

One solution (among others) to write functional tests:
python nose + tox

python proposes « unittests » inspired from Junit

https://nose.readthedocs.io/en/latest/writing_tests.html
 - nose is a python framework. It can be used as a launcher for tests (and much more).
 - nose can be used to test the controller from the REST API and against any simulator or
equipment.

https://tox.readthedocs.io/en/latest/

Tox is an easy way to automate and standardize tests in python:

- provides python virtualenv
- allow to set up profiles
- allow any command line tool, not just python -> useful to launch sims
- already used by ODL docs / sphynx

4

https://nose.readthedocs.io/en/latest/writing_tests.html
https://nose.readthedocs.io/en/latest/writing_tests.html
https://nose.readthedocs.io/en/latest/writing_tests.html
https://tox.readthedocs.io/en/latest/

Integration into Releng

Releng has a “gerrit-tox-verify” template with many options
- gerrit-tox-verify:
 build-timeout: 120
 build-node: centos7-builder-8c-8g

Adaptation needed:

- the build-node does not come with a maven set-up
 -> need to install it from tox -> because of virtualenv, don’t follow maven official doc and use symlinks rather than env vars

- functional tests can be quite long (~1h30) => need to increase time-outs
- sims consume memory (by default only 4G RAM) => need to change the build-node image

https://git.opendaylight.org/gerrit/#/c/79983/
https://git.opendaylight.org/gerrit/#/c/78544/

5

https://nose.readthedocs.io/en/latest/writing_tests.html
https://nose.readthedocs.io/en/latest/writing_tests.html
https://git.opendaylight.org/gerrit/#/c/79983/
https://git.opendaylight.org/gerrit/#/c/79983/
https://git.opendaylight.org/gerrit/#/c/78544/
https://git.opendaylight.org/gerrit/#/c/78544/
https://git.opendaylight.org/gerrit/#/c/78544/

current limitations

Tox profiles cannot be launched separately.

Tox logs are in a separate folder and cannot be watched before the jenkins job ends.
We have to way 90min…

Limited number of minions flavors: https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex

- We needed around 4 cores and 6GB RAM but no such image => centos7-builder-8c-8g.cfg
- The 4GB RAM image sometimes worked but there was only 1GB swap on it…
 => This is prone to memory (re)allocation deadlocks
- No maven installation by default

Criteria acceptance is binary: success or failure.
But no all functional tests are expected to pass.
Force to success -> still need for a manual check.

6

https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex
https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex
https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex
https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex
https://github.com/opendaylight/releng-builder/tree/master/jenkins-config/clouds/openstack/odlvex
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg
https://github.com/opendaylight/releng-builder/blob/master/jenkins-config/clouds/openstack/odlvex/centos7-builder-8c-8g.cfg

Approach inspired from OPNFV functest

General idea behind functest / Xtesting

The main purposes:

- customizing the test environment (Docker minions, Jenkins, etc…)

- testing the controller against real equipment (or a different sim)

How:
Offloading functional tests outside the integration framework with:
 - a bot account with -1/0/+1 verified privilege
 - a gerrit stream-events connection

8

Xtesting in a nutshell

• allow the developer to work only on the test suites without diving into CI/CD
integration

• check multiple components (see ONAP Orange OpenLab) in the same CI/CD
toolchain thanks to a good design

• simplify third-party test integration in a complete OPNFV-based (e.g. de facto
standard) CI/CD toolchain

• A key helper from first tests to full end2end service testing

9

https://en.wikipedia.org/wiki/CI/CD
https://wiki.onap.org/display/DW/Orange+OpenLab
https://wiki.onap.org/display/DW/Orange+OpenLab
https://www.opnfv.org/

10

typical deployment scheme

DE

G2

D

E

G

1

S

R

G

1

SR

G2

TSP 1

TSP 2

D

E

G

1

D

E

G

2

ROADM

A

ROADM

C

S

R

G

1

SR

G2

TSP 1

TSP 2

D

E

G

1

D

E

G

2

ROADM

B

lab

DBMS

logs

Thank you

